Получение топлива из природного газа Строительный портал

Получение топлива из природного газа

Материалы / 09.04.2013 / Как получить жидкое топливо из природного газа: новые разработки

Отличие между природным газом, бензином, керосином, лигроином, газойлем (дизельным топливом) и мазутом состоит только в длине цепи углеводородов, входящих в их состав. На их физические свойства еще немного влияет изомерия, но не очень существенно – изомеры имеют несколько более низкие температуры плавления и кипения, чем линейные углеводороды.

Все эти углеводороды принадлежат к семейству алканов – насыщенных углеводородов. Простейшим углеводородом является метан, имеющий один атом углерода и четыре атома водорода (CH4). Далее за ним следует этан, который состоит из двух атомов углерода и шести атомов водорода (C2H6). Метан и этан при комнатной температуре не сжижаются даже при высоких давлениях, поэтому представляют собой классический природный газ.

Далее следуют пропан и бутан, которые при высоких давлениях можно превратить в жидкость и при обычных температурах (пропан сжижается при высоком давлении, бутан уже при небольшом), их называют «жирным» газом. Пропан и бутан применяют в зажигалках и в автомобилях в качестве замены бензина.

Пентан, следующий за бутаном, уже будет жидким при комнатной температуре, и с него начинается «бензиновый» сектор углеводородов. По мере увеличения длины углеродной цепи, температуры плавления и кипения углеводородов линейно растут. Наиболее ценным является именно бензиновый сектор с пентана до декана (углеводорода, состоящего из цепи 10 атомов углерода и 22 атомов водорода).

Автомобилей все больше, а бензиновых морей не наблюдается

Количество автомобилей в мире все возрастает. Их число в 2010 году перевалило за миллиард, а к 2035 году, по подсчетам Международного энергетического агентства (IEA), количество автомобилей составит 1,7 млрд. Для сравнения: отметка в 500 млн была пройдена в 1986 году, и всего за 24 года количество автомобилей в мире удвоилось.

Сколько будет нужно бензина, и какого

В настоящее время в Европе 78% бензиновых автомобилей. Несмотря на то, что в перспективе источники энергии для автомобилей, вероятно, станут более разнообразными, рост числа транспортных средств не будет способствовать снижению спроса на бензин. Более того, рост экологических требований к бензину будет требовать все более качественного и в то же время не слишком дорогого топлива. В частности, это относится к таким стандартам, как «Евро». Так, в 2015 году ожидается очередное ужесточение в этом направлении — переход на стандарт класса «Евро-6». В России с 1 января 2013 года оборот топлива ниже класса «Евро-3» запрещен.

Тяжелые углеводороды можно разбить на более легкие – до бензиновой фракции. Данный процесс называется крекингом. Тяжелая молекула делится надвое – на предельную и непредельную молекулу. Например, эйкозан (углеводород, состоящий из 20 углеродных атомов) разбивается на молекулу декана и децена (непредельного углеводорода этиленового ряда). Крекинг позволяет увеличивать производство бензина, а также повышать его октановое число, так как одновременно происходят реакции полимеризации образовавшегося непредельного углеводорода, затем полимер повторно разбивается и снова сшивается, следствием реакций на основе радикального механизма является превращение линейных углеводородов в разветвленные.

Однако запасы даже тяжелой нефти со временем будут уменьшаться, а стоимость ее добычи – повышаться. В то же время США переживают бум добычи сланцевого газа, а в будущем не исключено, что будет начата промышленная разработка природного газа из газовых гидратов, пробная добыча с океанского дна которых, в частности, была проведена Японией в феврале 2013 года.

Как получить бензин из метана

Сланцевый газ представляет собой практически чистый метан. А можно ли из метана получить бензиновую фракцию (жидкое топливо)? Одна из технологий производства из метана бензиновых углеводородов была открыта еще в 20-х годах XX века, однако она требует больших энергозатрат . Эта технология предусматривает разложение метана при высоких температурах до этилена с выделением водорода. В настоящее время для этого используются катализаторы (свинец, кадмий, таллий или марганец), и температура порядка 500-900 °С. Далее применяют ограниченную полимеризацию этилена (по аналогии производства всем известного полиэтилена, только обрывают ее на стадии нужной фракции).

Иной, но не мене известной технологией производства жидкого топлива из природного газа является процесс Фишера-Тропша. При высокой температуре метан может взаимодействовать с парами воды (или кислородом в очень ограниченном количестве), образуя угарный газ и водород (так называемый «синтез-газ»). Эта реакция идет при температуре 800-900 °C на катализаторе, в качестве которого выступает никель с оксидом алюминия, а при более высоких температурах, порядка 1500 °C катализатор уже не требуется. Впоследствии в присутствии катализатора (железо-кобальт) из синтез-газа производятся жидкие углеводороды, и одновременно получается вода как побочный продукт. Возможна также более простая реакция – простое получение из угарного газа и водорода метилового спирта. Однако по причине того, что метиловый спирт сильно ядовит, замена бензина метиловым спиртом не представляется возможным.

Новые технологии

Оба способа производства жидких углеводородов по указанным выше технологиям требуют огромных затрат энергии, и поэтому пока малорентабельны. Однако стартап Siluria Technologies, расположенный в Лос-Анджелесе, пытается решить данную проблему. Появился этот стартап в 2008 году, отколовшись от компании Cambrios Technologies Corporation.

В качестве перспективного направления, позволяющего решить проблему стоимости получения синтетического жидкого топлива (не обязательно только бензиновой фракции), стартап посчитал термическую реакцию разложения метана . И для решения этой проблемы, по мнению стартапа, нужно подобрать удачный катализатор, чтобы удешевить разложение метана до этилена.

Подробностей исследования стартап не раскрывает, однако отмечает о существенном прогрессе. Так, стартап на компьютерах моделирует термический распад метана и перебирает еженедельно сотни потенциальных катализаторов. По словам сотрудников компании, превращение сланцевого газа в синтетическое жидкое топливо может быть настолько удешевлено, что это станет дешевле, чем получение аналогичных продуктов из нефти и совершит революцию на мировом энергетическом рынке . Запасы сланцевого газа также ограничены, однако если удастся найти достаточно дешевый способ добычи газа из газовых гидратов, то надобность в нефти почти отпадет.

Также синтетические углеводороды отличаются практически идеальными экологическими характеристиками – там не может быть ни сернистых соединений, ни ароматических углеводородов, ни азотсодержащих органических соединений, которые способствуют загрязнению атмосферы. Поэтому такое топливо будет способно соответствовать самым строгим экологическим стандартам, так как отделить ненужные газы на той или иной стадии техпроцесса будет легко. А выделить все нежелательные соединения из нефти намного сложнее, и до конца не представляется возможным.

К 2014 году стартап планирует запустить демонстрационный завод, правда, о его месторасположении пока не сообщается. Однако, если действительно удастся найти относительно дешевый способ производства жидкого топлива из природного газа, то это можно будет считать завершением «нефтяной» эпохи и переходом к «газовой» эпохе, что приведет к кардинальному изменению энергетической карты мира. А если удастся найти хотя бы рентабельный способ выделения природного газа из газовых гидратов, то об энергетическом кризисе можно будет забыть, по меньшей мере, на несколько тысяч лет, ведь запасы гидратов на океанском дне превышают запасы всего остального газа (в том числе и сланцевого) как минимум в сотню раз.

СИНТЕТИЧЕСКИЙ БЕНЗИН

Записала кандидат химических наук О. БЕЛОКОНЕВА.

Промышленная добыча нефти началась более 150 лет назад. За прошедшие с тех пор полтора века человечество уже израсходовало более половины нефтяных запасов. Вначале нефть использовалась в качестве источника тепловой энергии, теперь это стало экономически невыгодно. С наступлением автомобильной эры продукты фракционирования нефти в основном применяются в качестве моторного топлива. К 2010 году запасы нефтяных месторождений в значительной степени истощатся, соответственно возрастет стоимость добычи нефти и мир вплотную столкнется с проблемой использования альтернативных (ненефтяных) источников получения бензина и других видов топлива.

По своему химическому составу нефть — смесь углеводородов (алканов и циклоалканов). Кроме того, она содержит метан и некоторые сернистые и азотистые примеси. Бензин — легкокипящая фракция нефти, содержащая короткоцепочечные углеводороды с 5-9 атомами. Это основной вид моторного топлива для легковых автомобилей и небольших самолетов. Керосины более вязкие и тяжелые, чем бензин: они состоят из углеводородов с 10-16 атомами углерода. Керосин стал основным видом топлива для реактивных самолетов и ракетных двигателей. Газойль — более тяжелая фракция, чем керосин. Дизельное топливо для двигателей, установленных на тепловозах, грузовиках, тракторах, содержит смесь фракций керосина и газойля. Истощение природных нефтяных месторождений вовсе не грозит человечеству тотальным дефицитом моторного топлива. Вещества, по химическому составу похожие на бензин, керосин или дизельное топливо, вполне можно получить из углеродного сырья ненефтяного происхождения. Химики решили эту задачу еще в 1926 году, когда немецкие ученые Ф. Фишер и Г. Тропш открыли реакцию восстановления монооксида углерода (СО) при атмосферном давлении. Оказалось, что в присутствии катализаторов можно синтезировать в зависимости от соотношения водорода и монооксида углерода в газовой смеси жидкие и даже твердые углеводороды, по химическому составу близкие к продуктам фракционирования нефти. Смесь монооксида углерода и водорода, получившую название «синтез-газ», довольно легко получить из природного сырья: пропусканием водяного пара над углем (газификация угля) или конверсией природного газа (состоящего в основном из метана) водяным паром в присутствии металлических катализаторов. Синтез-газ образуется не только из угля и метана. Очень перспективны биотехнологические методы: термохимическая или ферментативная переработка отходов растительного сырья (биомассы) и конверсия газа, полученного путем разложения органических отходов, так называемого биогаза.

Читать еще:  Креативная замена двери — вешаем висюльки в проем

Интересно, что во время Второй мировой войны синтетическое топливо, полученное из угля, практически полностью покрывало потребности немецкой авиации. Работы по получению бензина из бурого угля до войны велись и в Советском Союзе, но до промышленного производства дело не дошло. В послевоенные годы цены на нефть упали, и потребность в синтетическом бензине и других топливных углеводородах на какое-то время отпала. Теперь же в связи с уменьшением нефтяных запасов планеты исследования в этой области химии переживают свое «второе рождение».

Качественного природного угля на планете осталось не так уж много. Внимание ученых привлек природный и попутный газ, огромное количество которого при нефтедобыче просто уходит в атмосферу. Производство синтетического жидкого топлива из природного газа очень выгодно экономически, поскольку газ трудно транспортировать: на его перевозку обычно затрачивается от 30 до 50% стоимости готового продукта. Превращение газа прямо на месторождении в жидкие компоненты значительно снизит объем капиталовложений, затрачиваемых на его переработку.

Существующие технологии позволяют перерабатывать природный газ в высококачественные бензин и дизельное топливо через стадию образования метанола. Производство по такой схеме довольно удобно, поскольку все реакции протекают в одном реакторе. Но эта цепочка химических превращений требует больших затрат энергии. В результате полученный синтетический бензин в 1,8-2,0 раза дороже «нефтяного».

Российские ученые из московского Института нефтехимического синтеза РАН разработали более рентабельную схему. Они предлагают получать синтетический бензин не через стадию образования метанола, а из другого промежуточного вещества — диметилового эфира (ДМЭ). Это нетрудно сделать, увеличив долю окиси углерода в синтез-газе. Важно то, что ДМЭ можно использовать как экологически чистое топливо для двигателей внутреннего сгорания. Он хорош тем, что полностью укладывается в рамки самых жестких европейских требований по содержанию твердых частиц в автомобильных выхлопах. По теплотворной способности ДМЭ уступает традиционному дизельному топливу — пропану и бутану, но его цетановое число гораздо выше: для обычного дизельного топлива оно 40-55, а для ДМЭ — 55-60. Так что преимущество ДМЭ перед дизельным топливом при запуске холодного двигателя очевидно. Кроме того, для горения ДМЭ необходимо меньше кислорода, чем для горения дизельного топлива.

В присутствии специально разработанных катализаторов ДМЭ превращается в очень неплохой бензин с октановым числом 92. Вредных примесей в нем меньше, чем в нефтяном топливе. Такой синтетический бензин вполне конкурентоспособен даже на европейском рынке. Новый способ получения синтетического топлива намного экономичнее и эффективнее классического «метанольного». В Институте высоких температур совместно с Институтом нефтехимического синтеза РАН создан генератор синтез-газа, представля ющий собой немного модифицированный дизельный двигатель. На входе — природный газ метан, который в генераторе превращается в синтез-газ. Далее синтез-газ в присутствии специально разработанных катализаторов преобразуется в топливные углеводороды. Поворотом крана можно запустить производство необходимого конечного продукта и по желанию получить на выходе метанол, ДМЭ, смесь углеводородов, аналогичных дизельному топливу, синтетический бензин. Экономическую выгоду от промышленного внедрения такого процесса трудно переоценить.

Чем выше температура реакции превращения метана в синтез-газ, тем выше производительность реактора. Обычные технологии не могут справиться с задачей проведения реакции при высоких температурах. Тут на помощь приходят ракетные технологии. Наиболее перспективной разработкой последних лет можно назвать новый высокотемпературный генератор синтез-газа, созданный при участии Института нефтехимического синтеза РАН в Приморске на опытном полигоне ракетно-космической корпорации «Энергия». Генератор создан по образу и подобию ракетного двигателя, поэтому его оболочка устойчива к воздействию высоких температур. Полученный в реакторе синтез-газ последовательно преобразовывается по новой эффективной схеме, описанной выше, в ДМЭ и бензин.

Моторные топлива, полученные из природного газа, не дороже продуктов переработки нефти, а по качеству даже их превосходят. Так что после окончательного истощения нефтяных месторождений «пробки» на дорогах не уменьшатся.

Иллюстрация «Генератор синтез-газа».
Генератор синтез-газа для окисления природного газа при высоких температурах, построенный на опытном полигоне ракетно-космической корпорации «Энергия» в Приморске при участии Института нефтехимического синтеза им. А. В. Топчиева РАН по технологии, используемой при строительстве ракетных двигателей.

Иллюстрация «Получение моторного топлива из ненефтяного углеводородного сырья».
Получение моторного топлива из ненефтяного углеводородного сырья: угля, биомассы, биогаза и природного газа. Схемы переработки сырья близки: на первой стадии происходит превращение в синтез-газ (смесь монооксида углерода и водорода), затем синтез-газ перерабатывают в метанол (традиционная схема) или в диметиловый эфир (ДМЭ) (схема, разработанная в Институте нефтехимического синтеза РАН), которые превращаются в моторное топливо (бензин, дизельное топливо).

Иллюстрация «Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ)».
Синтетический бензин, полученный по традиционной схеме промышленной переработки природного газа в топливные углеводороды через стадию образования метанола, в два раза дороже «нефтяного». Процесс синтеза топливных углеводородов через диметиловый эфир (ДМЭ), разработанный в Институте нефтехимического синтеза РАН, намного эффективнее и экономичнее традиционной «метанольной» схемы производства синтетических моторных топлив.

Получение топлива из природного газа

Получение топлива из природного газа

Общее описание:

Получаемая при помощи данного описания жидкость — метанол (метиловый спирт). Метанол в чистом виде применяется в качестве растворителя и как высокооктановая добавка к моторному топливу, а также как самый высокооктановый (октановое число равно 150) бензин. Это тот самый бензин, которым заправляют баки гоночных мотоциклов и автомобилей. Как показывают зарубежные исследования, двигатель, работающий на метаноле, служит во много раз дольше чем при использовании обычного автобензина, мощность его повышается на 20% (при неизменном рабочем объеме двигателя). Выхлоп двигателя, работающего на этом топливе, экологически чист и при проверке его на токсичность вредные вещества практически отсутствуют.

Малогабаритный аппарат для получения этого топлива прост в изготовлении, не требует особых знаний и дефицитных деталей, безотказен в работе. Его производительность зависит от различных причин, в том числе и от габаритов. Аппарат, схему и описание сборки которого предлагаем вашему вниманию, при Д=75мм дает три литра готового топлива в час, имеет вес около 20 кг, и габариты приблизительно: 20 см в высоту, 50 см в длину и 30 см в ширину.

Внимание: метанол является сильным ядом. Он представляет собой бесцветную жидкость с температурой кипения 65оС, имеет запах, подобный запаху обычного питьевого спирта, и смешивается во всех отношениях с водой и многими органическими жидкостями. Помните о том, что 30 миллилитров выпитого метанола смертельны!

Читать еще:  Несколько секретов дизайна соляной комнаты

Принцип действия и работа аппарата:

Водопроводная вода подключается к «входу воды» (15) и, проходя далее, разделяется на два потока: один поток через краник (14) и отверстие (С) входит в смеситель (1), а другой поток через краник (4) и отверстие (Ж) идет в холодильник (3), проходя через который вода, охлаждая синтез-газ и конденсат бензина, выходит через отверстие (Ю).

Бытовой природный газ подключается к трубопроводу «Вход газа» (16). Далее газ входит в смеситель (1) через отверстие (Б), в котором, смешавшись с паром воды, нагревается на горелке (12) до температуры 100 — 120оС. Затем из смесителя (1) через отверстие (Д) нагретая смесь газа и водяного пара входит через отверстие (В) в реактор (2). Реактор (2) заполнен катализатором №1, состоящим из 25% никеля и 75% алюминия (в виде стружки или в зернах, промышленная марка ГИАЛ-16). В реакторе происходит образование синтез газа под воздействием температуры от 500оС и выше, получаемой за счет нагрева горелкой (13). Далее нагретый синтез-газ входит через отверстие (Е) в холодильник (З), где он должен охладиться до температуры 30-40оС или ниже. Затем охлажденный синтез-газ через отверстие (И) выходит из холодильника и через отверстие (М) входит в компрессор (5), в качестве которого можно использовать компрессор от любого бытового холодильника. Далее сжатый синтез-газ с давлением 5-50 через отверстие (Н) выходит из компрессора и через отверстие (О) поступает в реактор (6). Реактор (6) заполнен катализатором №2, состоящим из стружки 80% меди и 20% цинка (состав фирмы «ICI», марка в России СНМ-1). В этом реакторе, который является самым главным узлом аппарата, образуется пар синтез-бензина. Температура в реакторе не должна превышать 270оС, что можно проконтролировать градусником (7) и регулировать краником (4). Желательно поддерживать температуру в пределах 200-250оС, можно и ниже. Затем пары бензина и не прореагировавший синтез-газ через отверстие (П) выходят из реактора (6) и через отверстие (Л) входят в холодильник (З), где пары бензина конденсируют и через отверстие (К) выходят из холодильника. Далее конденсат и не прореагировавший синтез-газ входят через отверстие (У) в конденсатор (8), где накапливается готовый бензин, который выходит из конденсатора через отверстие (Р) и краник (9) в какую-либо емкость.

Отверстие (Т) в конденсаторе (8) служит для установки манометра (10), который необходим для контроля давления в конденсаторе. Оно поддерживается в пределах 5-10 атмосфер или больше в основном с помощью краника (11) и частично краника (9). Отверстие (Х) и краник (11) необходимы для выхода из конденсатора не прореагировавшего синтез газа, который идет на рециркуляцию обратно в смеситель (1) через отверстие (А). Краник (9) регулируют так, чтобы постоянно выходил чистый жидкий бензин без газа. Лучше будет, если уровень бензина в конденсаторе будет увеличиваться, чем уменьшаться. Но самый оптимальный случай, когда уровень бензина будет постоянным (что можно проконтролировать путем встроенного стекла или какого-либо другого способа). Краник (14) регулируют так, чтобы в бензине не было /воды/ и в смесителе пара образовывалось лучше меньше, чем больше.

Запуск аппарата:

Открывают доступ газа, вода (14) пока закрыта, горелки (12), (13) работают. Краник (4) полностью открыт, компрессор (5) включен, краник (9) закрыт, краник (11) полностью открыт.

Затем приоткрывают краник (14) доступа воды, а краником (11) регулируют нужное давление в конденсаторе, контролируя его манометром (10). Но не в коем случае не закрывайте краник (11) полностью. Далее, минут через пять, клапаном (14) доводят температуру в реакторе (6) до 200-250оС. Затем чуть-чуть приоткрывают краник (9), из которого должна пойти струя бензина. Если она будет идти постоянно — приоткройте краник больше, если будет идти бензин в смеси с газом — приоткройте краник (14). Вообще, чем на большую производительность настроите аппарат, тем лучше. Содержание воды в бензине (метаноле) вы можете проверить с помощью спиртометра. Плотность метанола равна 793 кг/м3.

Данный аппарат желательно изготавливать из нержавеющей стали или железа. Все детали изготовлены из труб, в качестве тонких соединительных труб можно использовать медные трубки. В холодильнике необходимо сохранить соотношение X_Y=4, то есть, например, если X+Y=300 мм, то X должно быть равно 240 мм, а Y, соответственно, 60 мм. 240/60=4. Чем больше витков уместится в холодильнике с той и с другой стороны, тем лучше. Все краники применены от газосварочных горелок. Вместо краников (9) и (11) можно использовать редукционные клапана от бытовых газовых баллонов или капиллярные трубки от бытовых холодильников. Смеситель (1) и реактор (2) нагреваются в горизонтальном положении (смотрите чертеж).

Все о транспорте газа

Ученые из Института нефтехимического синтеза им.А.В.Топчиева РАН получили моторное топливо из природного газа.По известной технологии, метан, которого в природном газе около 94%, превращают в синтез-газ (оксиды углерода в смеси с водородом). Из него делают метиловый спирт, затем моторное топливо. Регулировать состав конечного продукта не удается — получается смесь разных, в том числе слишком тяжелых углеводородов.

Сотрудники ИНХС предлагают получать синтез-газ в модифицированных двигателях. Двигатель становится своеобразным химическим реактором, который вырабатывает из синтез-газа демитиловый эфир и одновременно электроэнергию. Оказалось, что гораздо выгоднее получать из синтез-газа диметиловый эфир. Это соединение — прекрасное дизельное топливо, которое можно использовать как бытовой газ, топливо для электростанций, заменитель фреонов в холодильных установках. Получить его технически проще и экономически выгоднее, чем метанол.

Из диметилового эфира можно делать высокооктановый, чистый бензин. Этот синтез ученые разработали и осуществили на опытно-промышленном уровне. Предложен также синтез бензина из метана без промежуточных стадий получения метанола или диметилового эфира.

В России решена проблема получения бензина из углеводородного газового сырья

В Институте Нефтехимического Синтеза им. А.В.Топчиева РАН разработали экологически чистую технологию получения синтетического моторного топлива из газового углеводородного сырья с большим выходом конечного продукта (на 90% и выше получают чистый бензин). Эта проблема получения жидких продуктов различного назначения из газового углеводородного сырья уже много десятилетий будоражит умы исследователей практически всех промышленно развитых стран мира.

Само топливное направление переработки углеводородных газов, как отмечают экономисты, находится на пределе рентабельности и не может конкурировать с топливами, получаемыми из нефти. В то же время, подчеркивается, что топливный рынок может принять практически любое количество бензина и других видов моторного топлива, в то время как емкость рынка других химических продуктов ограничена. Нестабильность рынков нефти и постоянные угрозы то забастовок (как в Венесуэле), то войны (как в Ираке и Кувейте), а также скорое исчерпание мировых запасов нефти, говорит о необходимости учитывать возможность перехода на иные виды сырья при производстве бензина.

Кроме того, стоимостные показатели для моторных топлив в отдаленных и труднодоступных районах, а также экологические проблемы, связанные с большим количеством попутных нефтяных газов, зачастую сжигаемых на факелах, в частности на морских платформах, аспект экологии в свете возможности использования синтетических моторных топлив является их преимущество перед топливами из нефти в отношении чистоты выхлопных газов.

По этим причинам в последние годы XX века интерес к промышленному использованию углеводородных нефтяных газов в качестве сырья для получения моторных топлив получил новый импульс в ряде индустриально развитых стран мира, в том числе и в России. Но до настоящего времени для получения синтез-газа почти исключительно применяли процесс конверсии метана с водяным паром в присутствии кислорода на катализаторах на основе никеля CH4+H2O=СО+3Н2.

У этого процесса есть два основных недостатка: его энергоемкость и то, что для его реализации требуется создание специального завода по производству кислорода. Это не только ложится тяжелым бременем на экономику, но и увеличивает технический риск. Например, известно, что в 1997 году на одном из производств по получению синтетического топлива произошел разрушительный взрыв на заводе по производству кислорода. В присутствии кислорода происходят реакции с выделением тепла. В результате подобной реакции в синтез-газе появляется заметное количество углекислоты, а в некоторых случаях отношение СО/СО2 близко к двум.

Читать еще:  Пол из обрезной доски: особенности и этапы монтажа своими руками

Для устранения первого из этих недостатков энергозатратную паровую конверсию по реакции конверсии метана с водяным паром (или, как ее еще называют, паровой риформинг) стали комбинировать в одном аппарате с энергопроизводящей реакцией парциального (частичного) окисления метана кислородом. Этот комбинированный процесс получил название «автотермический риформинг». Но это все равно вело к удорожанию конечного продукта.

Способ получения синтез-газа в процессе парциального окисления метана пытались развивать на фирмах Техасо Inc. и Royal Dutch/Shell Group. Но процесс требовал высоких температур (1200-1500°С) и давления (до 150 атм), а в качестве окислителя на мощных промышленных установках опять таки приходилось использовать кислород, что не снижало степень риска подобных производств.

К тому же, бензин получался низкого качества, либо высокого, но очень дорогой. А на всех этапах получения конечного продукта требовалось использовать только высокочистое сырье. Это требует больших затрат на его подготовку и очистку и усложняет технологическую схему.

Успеха в качественном развитии данного направления удалось добиться ученым Института Нефтехимического Синтеза им. А.В.Топчиева РАН, которые разработали технологию, обеспечивающую получение по максимально простой и экономичной схеме высокооктанового экологически чистого бензина с хорошим выходом конечного продукта, удовлетворяющего перспективным требованиям стандарта Евро-4, которые будут введены в 2005 году.

Сущность их метода получения бензина состоит в следующем. Сначала при повышенном давлении синтез-газ, содержащий водород, оксиды углерода, воду, оставшийся после его получения не прореагировавший углеводород, а также содержащий или не содержащий балластный азот. Затем, путем конденсации из синтез-газа выделяют и удаляют воду и потом осуществляют газофазный, одностадийный каталитический синтез диметилового эфира. Полученную таким образом газовую смесь без выделения из нее диметилового эфира под давлением пропускают над модифицированным высококремнистым цеолитом для получения бензина и охлаждают газовый поток для выделения бензина.

Получение синтез-газа осуществляют различными способами, например, в процессе парциального окисления углеводородного сырья под давлением, обеспечивающим возможность его каталитической переработки без дополнительного компримирования. Или же получают путем каталитического риформинга углеводородного сырья с водяным паром или путем автотермического риформинга. При этом процесс проводят при подаче воздуха, воздуха, обогащенного кислородом, или чистого кислорода. Были отлажены и другие варианты.

Таким образом удается получить бензиновую фракцию с выходом до 90%, а выход сухого газа (C1-С3) составлял 8,5%. Экологически вредных выбросов на порядки меньше по данной технологии, при этом в их составе отсутствуют такие ядовитые компоненты, как бензол, дурол и изодурол. Эти результаты имеют важное экологическое значение, принимая во внимание тот факт, что тенденции изменения требований к топливу для карбюраторных двигателей характеризуются ограничением допустимого содержания в них ароматических углеводородов.

Технология GTL (Gas to liqu > 03.11.2017 Рубрика: Экотопливо Автор: admin

Газ в жидкость (Gas to liquids) – процесс преобразования природного газа или других газообразных углеводородов в длинноцепочные углеводороды, такие как бензин и дизтопливо. Богатые метаном газы преобразуются в жидкие синтетические топлива либо путем прямой конверсии, либо через синтез-газ как промежуточный продукт.

Процесс Фишера-Тропша

Процесс Фишера-Тропша был разработан в Германии в середине 20-х годов прошлого века. Он начинается с парциального (частичного) окисления метана (природного газа) в диоксид углерода, монооксид углерода, водород и воду. Кислород либо берется из воздуха (что делает газ менее насыщенным), либо подается из воздушного криогенного сепаратора (что увеличивает стоимость).

Соотношение монооксида углерода и водорода (1:2) регулируется реакцией с водяным газом, а избыток диоксида углерода удаляется с помощью водных растворов алканоаламина (или физическим растворением). После удаления воды остается синтез-газ (сингаз), который, химически реагируя в присутствии катализатора (железа или кобальта) превращается в жидкие углеводороды и другие побочные продукты.

Метанол в бензин (Methanol to gasoline process – MTG)

В начале 70-х гг. ХХ века компания Mobil разработала альтернативную технологию конверсии природного газа в синтез-газ, а синтез-газа в метанол. Затем метанол полимеризуется в присутствии цеолитного катализатора с образованием алканов (насыщенных углеводородов).

Метанол производится из метана (природного газа) посредством трех реакций: парового риформинга, конверсии водяного газа и синтеза. Затем он преобразуется в бензин по оригинальной технологии Mobil. Вначале метанол обезвоживается с получением диметилэфира, который, в свою очередь, далее дегидратируется в присутствии оригинального цеолитного катализатора ZSM-5, разработанного Mobil. В результате получается бензин, в котором содержание углеводородов с пятью и более атомами углерода достигает 80% по весу. Для прекращения реакции ZSM-5 деактивируется коксованием с добавлением избытка углерода. В дальнейшем катализатор может быть вновь активирован путем выжигания кокса потоком горячего (500 °C) воздуха. Однако число циклов реактивации ограничено.

Синтез-газ в бензин плюс (Syngas to gasoline plus process – STG+)

Этот способ основан на технологии MTG. В ходе непрерывного циклового термохимического процесса полученный из природного газа синтез-газ преобразуется в высокооктановый синтетический бензин. Весь цикл состоит из четырех этапов. Каждый этап осуществляется в отдельном реакторе с неподвижным слоем катализатора, которые последовательно соединены между собой.

Синтез метанола. В первом реакторе сингаз, проходя через слой катализатора, преобразуется в метанол, который подается во второй реактор.

Синтез диметилэфира (ДМЭ). Здесь метанол также проходит через слой катализатора и подвергается дегидратации, в результате чего на выходе получают ДМЭ.

Синтез бензина. В третьем реакторе поступивший ДМЭ с помощью катализаторов преобразуют в углеводороды, включающие парафины (алканы), ароматические углеводороды, нафтены (циклоалканы) и небольшое количество олефинов (алкенов). Все они имеют от 6 до 10 атомов углерода в молекуле.

Очистка бензина. В четвертом реакторе продукты, поступившие из третьего реактора, подвергаются трансалкированию и гидрогенизации. Это уменьшает содержание дурола (тетраметилбензола)/изодурола и триметилбензола, которые имеют высокие точки. Поэтому их содержание в бензине должно быть сведено к минимуму. В результате полученный синтетический бензин имеет высокое октановое число и необходимые вязкостные свойства.

Сепаратор. Здесь смесь, поступившая из четвертого реактора, конденсируется. Несконденсированный газ и готовый бензин разделяются. Большая часть газа направляется обратно в первый реактор для переработки. Полученный синтетический бензин состоит из парафинов, ароматических углеводородов и нафтенов.

Коммерческое использование

Широкому использованию GTL препятствует высокая себестоимость процесса переработки и высокая цена газа. Поэтому конверсия газа в жидкое топливо оправдывает себя только в некоторых случаях.

Используя технологию GTL, на нефтеперерабатывающих заводах можно перерабатывать газообразные отходы, сжигаемые в факеле, в мазут. По оценке Всемирного банка, ежегодно свыше 150 млн. кубометров природного газа бесполезно сжигается или выпускается в атмосферу, что составляет 25% годового потребления США или 30% потребления Евросоюза. Этот ресурс может быть полезен, применив технологию GTL. Ее также можно использовать в местах газодобычи, где строительство газопровода экономически невыгодно, так как синтетическое жидкое топливо дорого в производстве, но дешево в транспортировке. Значение GTL намного возрастет в будущем, когда запасы нефти будут исчерпаны.

Перспективной выглядит использование микроканальных реакторов для переработки нетрадиционного газа или газа на отдаленных месторождениях в жидкие топлива. Эти реакторы, разработанные американской компанией Velocys, используют процесс Фишера-Тропша. Они состоят из тысяч каналов размером несколько миллиметров. Одни каналы наполнены катализатором, а другие, предназначенные для охлаждения, водой. За счет лучшего охлаждения реакция может проходить при более высоких температурах и с использованием более сильных катализаторов.

В итоге процесс переработки получается более эффективным. Модульные заводы, построенные на микроканальных реакторах, значительно меньше обычных установок на реакторах с неподвижным или псевдоожиженным слоем катализатора. Это позволяет сделать рентабельным производство синтетического топлива в отдаленных районах и на небольших месторождениях. Выгодным также представляется использование GTL установок на морских судах, занимающихся добычей, переработкой и доставкой нефти с удаленных и глубоководных морских месторождений (FPSO).

Ссылка на основную публикацию
Adblock
detector